skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhusal, Dipkamal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Convolutional Neural Networks (CNNs) frequently “cheat” by exploiting superficial correlations, raising concerns about whether they make predictions for the right reasons. Inspired by cognitive science, which highlights the role of attention in robust human perception, recent methods have sought to guide model attention using concept-based supervision and explanation regularization. However, these techniques depend on labor-intensive, expert-provided annotations, limiting their scalability. We propose a scalable framework that leverages vision-language models to automatically generate semantic attention maps using natural language prompts. By introducing an auxiliary loss that aligns CNN attention with these language-guided maps, our approach promotes more reliable and cognitively plausible decision-making without manual annotation. Experiments on challenging datasets, ColoredMNIST and DecoyMNIST, show that our method achieves stateof- the-art performance on ColorMNIST and remains competitive with annotationheavy baselines on DecoyMNIST, demonstrating improved generalization, reduced shortcut reliance, and model attention that better reflects human intuition. Our code is available at https://github.com/ryanlyang/LearningToLook/. 
    more » « less
    Free, publicly-accessible full text available December 7, 2026